• Quest advanced vapor cooled, vacuum shell technology insulates LH2 tanks for aircraft
  • Quest Discrete Spacer Technology supports thin, lightweight vacuum shell for Mars surface operation
  • Quest IMLI insulates part of Roman Space Telescope
  • Quest IMLI enables Lunar Environmental Monitoring Station to survive cold lunar night
  • Quest IMLI insulates cryogenic receiver dewar for NASA RRM3, first in-space cryogenic fluid transfer
  • Quest IMLI insulates the detector for Lucy spacecraft heading to Jupiter Asteroids
  • Quest IMLI insulation on the NASA GPIM spacecraft
  • Quest Load Bearing Insulation helps make NASA Reduced Boil-Off test a success

Quest selected for 3 NASA SBIR Phase I awards

In May 2017 Quest had three new concepts selected for award by NASA.  This is great news, and allows us to move forward with three unique thermal control systems for future NASA and commercial use. One contract advances our on-Mars surface "Multi-Environment MLI", an ultra high performance low mass insulation able to operate in Mars atmosphere to protect LOX produced on Mars surface via ISRU. Two contracts were to develop novel "Variable Conductance Radiators" - highly variable spacecraft radiators.  Radiators help control the thermal environment in a spacecraft, with the "turndown ratio" a measure of how much heat rejection can be varied. Current state of the art turndown ratios are 4:1, while Quest's technology may provide 80:1 ratios, allowing spacecraft to better operate in different phases of their missions.